Recent and influential publications using or about the AutoMech software suite



AutoMech

  1. Elliott, S. N.; Moore III, K. B.; Mulvihill, C. R.; Copan, A. V.; Pratali Maffei, L.;Klippenstein, S. J.; The role of stereochemistry in combustion processes. WIRES Comp. Mol. Sci. 2024, 14, e1710 https://doi.org/10.1002/wcms.1710

  1. Elliott, S. N.; Keceli, M.; Ghosh, M. K.; Somers, K.P.; Curran, H. J.; Klippenstein, S. J.; High-accuracy heats of formation for alkane oxidation: From small to large via the automated CBH-anl method J. Phys. Chem. A, 2023, 127, 6, 1512–1531 https://doi.org/10.1021/acs.jpca.2c07248

  1. Elliott, S. N.; Moore, K. B.; Copan, A. V.; Georgievskii, Y.; Keceli, M.; Somers, K. P.; Ghosh, M. K.; Curran, H. J.; Klippenstein, S. J.; Systematically Derived Thermodynamic Properties for Alkane Oxidation Combust. Flame, 2023, 112487, https://doi.org/10.1016/j.combustflame.2022.112487

  1. Maffei, L. P.; Moore, K. B.; Georgievskii, Y.; Mulvihill, C. R.; Elliott, S. N.; Cho, J.; Sivaramakrishnan, R.; Faravelli, T.; Klippenstein, S. J.; Automated identification and calculation of prompt effects in kinetic mechanisms using statistical models Combust. Flame, 2022, 112422, https://doi.org/10.1016/j.combustflame.2022.112422

  1. Ghosh, M. K.; Panigrahy, S.; Dong, S.; Elliott, S. N.; Klippenstein, S. J.; Curran, H. J.; The Influence of Thermochemistry on the Reactivity of Propane, the Pentane Isomers and n-heptane in the Low Temperature Regime. Proc. Combust. Inst., 2023, 39 (1), 653-662, https://doi.org/10.1016/j.proci.2022.08.086

  1. S. N. Elliott, K. B. Moore, A. V. Copan, M. Keceli, C. Cavallotti, Y. Georgievskii, S. F. Schaefer, and S. J. Klippenstein. Automated theoretical chemical kinetics: predicting the kinetics for the initial stages of pyrolysis. Proc. Combust. Inst., 38:375–384, 2021. doi:10.1016/j.proci.2020.06.019.

  2. D. P. Zaleski, R. Sivaramakrishnan, H. R. Weller, N. A. Seifert, D. H. Bross, B. Ruscic, K. B. Moore, S. N. Elliott, A. V. Copan, L. B. Harding, S. J. Klippenstein, R. W. Field, and K. Prozument. Substitution reactions in the pyrolysis of acetone revealed through a modeling, experiment, theory paradigm. J. Am. Chem. Soc., 143:3124–3142, 2021. doi:10.1021/jacs.0c11677.

  1. S. N. Elliott, K. B. Moore, A. V. Copan, M. Keceli, C. Cavallotti, Y. Georgievskii, S. F. Schaefer, and S. J. Klippenstein. Automated theoretical chemical kinetics: predicting the kinetics for the initial stages of pyrolysis. Proc. Combust. Inst., 38:375–384, 2021. doi:10.1016/j.proci.2020.06.019.

  2. D. P. Zaleski, R. Sivaramakrishnan, H. R. Weller, N. A. Seifert, D. H. Bross, B. Ruscic, K. B. Moore, S. N. Elliott, A. V. Copan, L. B. Harding, S. J. Klippenstein, R. W. Field, and K. Prozument. Substitution reactions in the pyrolysis of acetone revealed through a modeling, experiment, theory paradigm. J. Am. Chem. Soc., 143:3124–3142, 2021. doi:10.1021/jacs.0c11677.

QTC (AutoMech Prototype)

  1. M. Keceli, S. N. Elliott, Y. P. Li, M. S. Johnson, C. Cavallotti, Y. Georgievskii, W. H. Green, M. Melucchi, J. M. Wozniak, A. W. Jasper, S. J. Klippenstein. Automated computational thermochemistry for butane oxidation: A prelude to predictive automated combustion kinetics. Proc. Combust. Inst., 37:363-371, 2019. doi:10.1016/j.proci.2018.07.113.

EStokTP

  1. C. Cavallotti, C., M. Pelucchi, Y. Georgievskii, S. J. Klippenstein. EStokTP: electronic structure to temperature-and pressure-dependent rate constants—a code for automatically predicting the thermal kinetics of reactions. J. Chem. Theory Comput., 15(2):1122-1145, 2018. doi:10.1021/acs.jctc.8b00701.